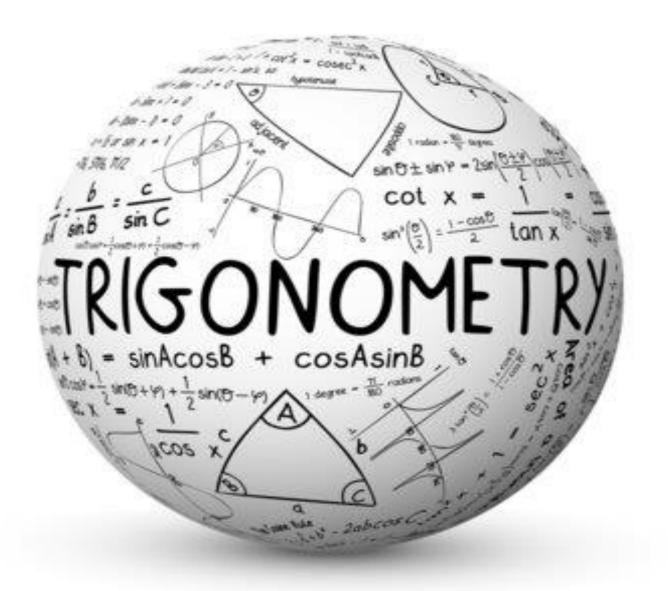


SRI AKILANDESWARI WOMEN'S COLLEGE, WANDIWASH

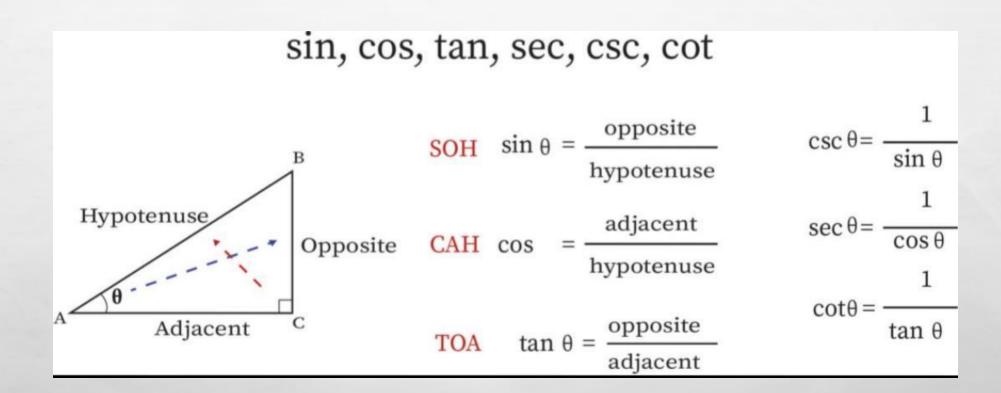
CLASS: I UG MATHEMATICS

E SAMUNDEESWARI

ASSISTANT PROFESSOR

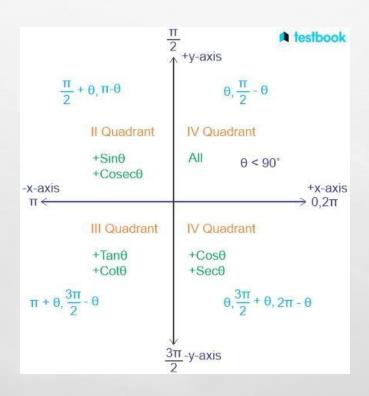

DEPARTMENT OF MATHEMATICS

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

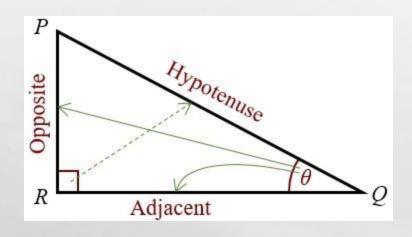

TIPS & TRICKS

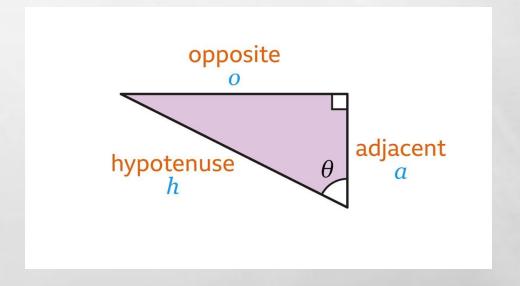
MATHS

FORMULA



TRIGONOMETRY RATIOS:


QUADRANT


4

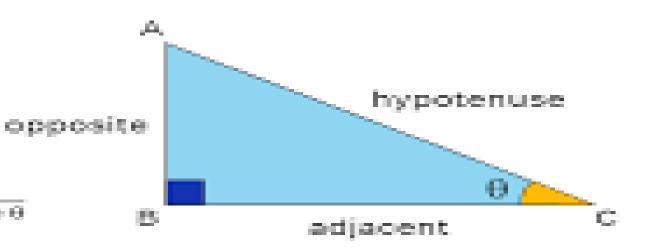
White the second second

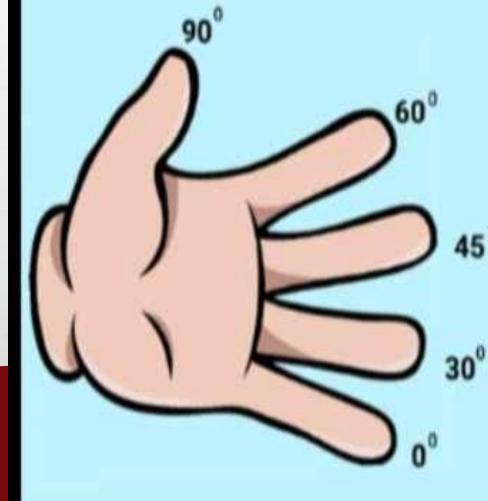
TRIGONOMETRIC RATIOS OF 0° AND 90°

Basic Trigonometric Formulas

In Right Triangle ABC

$$\sin \theta = \frac{\text{side opposite to angle }\theta}{\text{hypotenuse}}$$


$$\cos \theta = \frac{\text{side adjacent to angle }\theta}{\text{hypotenuse}}$$


$$tam \theta = \frac{side opposite to angle \theta}{side adjacent to angle \theta}$$

$$coseo \Theta = \frac{1}{sin \Theta} = \frac{bypotenuse}{side opposite to angle \Theta}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hypotenuse}}{\text{side adjacent to angle }\theta}$$

$$\cot \theta = \frac{1}{\tan \theta} = \frac{\text{side adjacent to angle } \theta}{\text{side opposite to angle } \theta}$$

$$\sin 0^0 = \frac{\sqrt{0}}{2} = 0$$

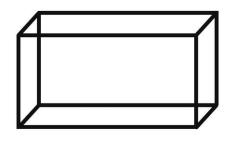
$$\sin 30^0 = \frac{\sqrt{1}}{2} = \frac{1}{2}$$

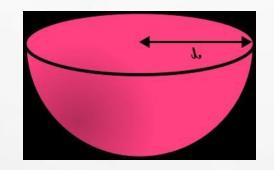
$$\sin 45^0 = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

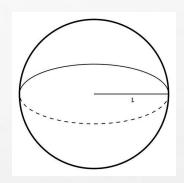
$$\sin 60^{0} = \frac{\sqrt{3}}{2}$$

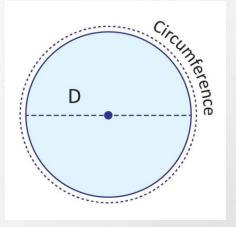
$$\sin 90^0 = \frac{\sqrt{4}}{2} = \frac{1}{2}$$

angle θ	O°	30°	45°	60°	90°
$\sin \theta$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
$\tan heta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	not defined
$\csc \theta$	not defined	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1
$\sec \theta$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	not defined
$\cot \theta$	not defined	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

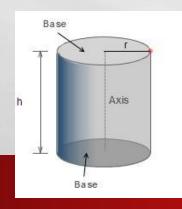

The second secon

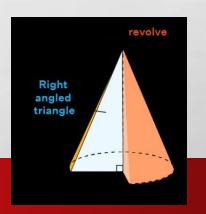

A. E.


July 1

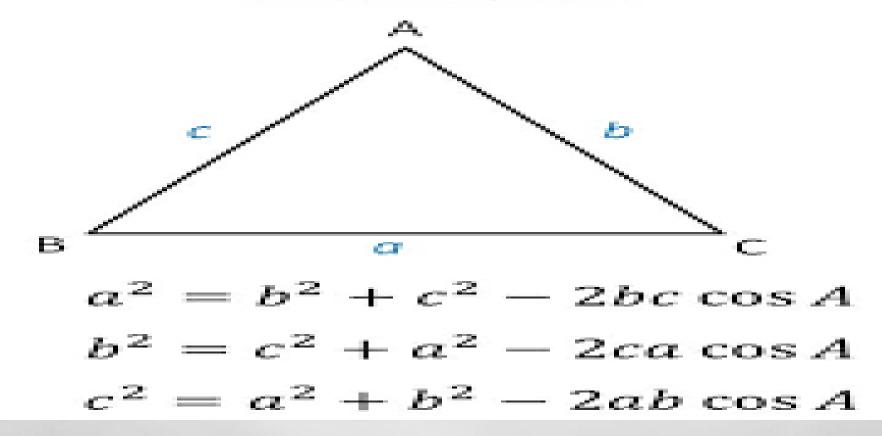

TRIGONOMETRIC RATIOS FOR COMPLEMENTARY ANGLES

Angle/ Function	$-\theta$	$90^{\circ} - \theta$ or $\frac{\pi}{2} - \theta$	$90^{\circ} + \theta$ or $\frac{\pi}{2} + \theta$						
Sine	$-\sin\theta$	$\cos \theta$	$\cos \theta$	$\sin \theta$	$-\sin\theta$	$-\cos\theta$	$-\cos\theta$	$-\sin\theta$	$\sin \theta$
Cosine	$\cos \theta$	$\sin \theta$	$-\sin\theta$	$-\cos\theta$	$-\cos\theta$	$-\sin\theta$	$\sin \theta$	$\cos \theta$	$\cos \theta$
tangent	$-\tan\theta$	$\cot \theta$	$-\cot\theta$	$-\tan\theta$	$\tan \theta$	$\cot \theta$	$-\cot\theta$	$-\tan\theta$	$\tan \theta$
cotangent	$-\cot\theta$	$\tan\theta$	$-\tan\theta$	$-\cot\theta$	$\cot \theta$	$\tan \theta$	$-\tan\theta$	$-\cot\theta$	$\cot \theta$
secant	$\sec \theta$	${\rm cosec}\theta$	$-\cos e c \theta$	$-\sec\theta$	$-\sec\theta$	$-\cos e c \theta$	$\csc\theta$	$\sec \theta$	$\sec \theta$
cosecant	$-\cos e c \theta$	$\sec \theta$	$\sec \theta$	${\rm cosec}\theta$	$-\cos e c \theta$	$-\sec\theta$	$-\sec\theta$	$-\cos e c \theta$	$\csc\theta$



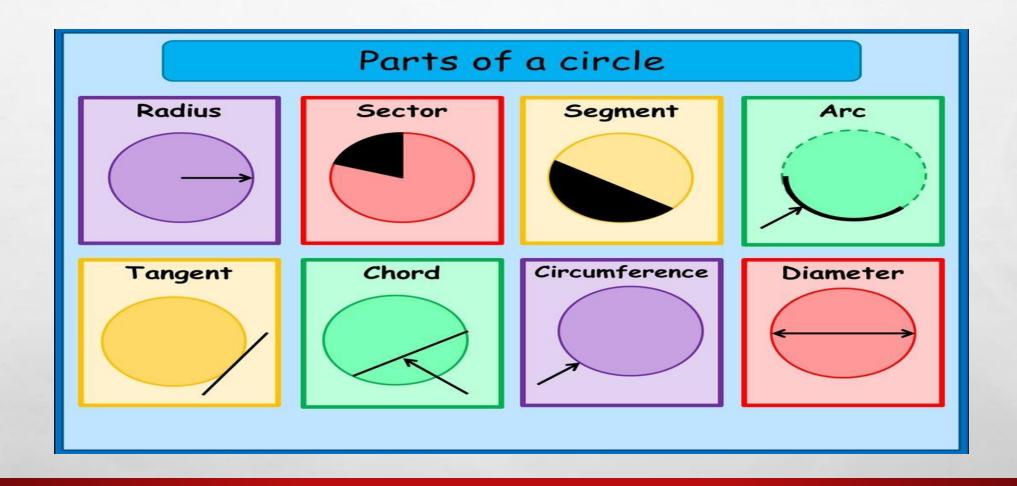


MENSURATION



teachoo.com

Cosine Law



FORMULA FOR CIRCLE:

	Figures	Area	Perimeter	- Table 1
Circle (0.,	πr^2 or $\frac{\pi d^2}{4}$	2πr or πd	r: radius $d: diameter$ $\pi = \frac{22}{7} \text{ or } 3.14$
Semicircle	\bigcap	$\frac{\pi r^2}{2}$	πr + 2r	
Quadrant	À	$\frac{\pi r^2}{4}$	$\frac{\pi r}{2} + 2r$	

PARTS OF A CIRCLE:

4

A CONTRACTOR OF THE SECOND

FORMULA:

Name	Figure	Curved Surface area	Total surface area	Volume
Cuboid	DDh	2h(l+ b)	2(lb+ bh + lh)	lbh
Cube	a d	4a²	6a²	a³
Right circular cylinder	T P	2πrh	2πr(r+h)	πr²h
Right circular cone		πr/	πr(/+ r)	<u>1</u> πr²h
Sphere			4π r²	$\left(\frac{4}{3}\right)\pi \Gamma^3$
Hemi- sphere		2π r²	3π r²	$\left(\frac{2}{3}\right)\pi\Gamma^3$

THANK YOU